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Problem Statement

diInternet of Things system:
1 Edge Sensors
2 Neighbourhood Edge Gateways
1 Data Centres (Cloud)

dWhat we Are doing:

0 Sense multivariate contextual data at
the Edge

O Transfer data to the Cloud for analytics

1 Have accurate and up-to-date
knowledge in the Cloud

OWhat we Don’t want:

0 Computational overhead at the Data
Centres

2 Communication Overhead
2 High Network bandwidth
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Problem Statement

JWhat we Can do:

0 Gather some of the sensed data in the
sensor

1 Create a ML model from that data
O Communicate the ML model

O Wait until a ML model Concept Drift
(CD) has occurred

J Communicate an updated ML model

JWhat we Will achieve:
O Less communication in the network
J Lower bandwidth requirement

0 Data is delivered to the Datacentre
partially analysed

O Data is anonymised by preserving the
raw context at the sensor level

Sense data

Create model

Send model




¥ What is a Concept Drift?

dDef. ‘A changing context which induces a change in
the target concepts’ (widmer & Kubat, 1996)
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Handling Concept Drift: Cumulative Sum (CuSum)

JAbsolute Error Difference between current ML model and previously
delivered ML model on the most up-to-date data:
dAe=|e —é€|

) Good Distribution and the Bad distribution of Ae

O Estimate the Probability
Density Functions: Pg,,q and Ppgq
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. . Fig. Good Distribution vs. Bad Distribution
CuSum: Invented by E. Page, Uni of Cambridge, 1954



Handling Concept Drift: Cumulative Sum (CuSum)

QO For each new Ae, calculate the Log-Likelihood Ratio:

Ppe | bad

Dlt — LAe — ln
Ae | good

Sum up the log-likelihood ratios up to time t:

as[t] = Yhoo b

QO Decision Value for Concept Drift detection:

g = S[t] — ming<g<,—1(S[k])

OML Model Update Criterion: g > h, (h < threshold)



From CuSum to Optimal Stopping Theory

JWhat does Optimal Stopping Theory deal with?

CJHow to estimate the best time to stop a process and gain the
highest reward or suffer the least penalty?

dPopular Examples:
dThe Secretary problem
dThe Blackjack Card game
The House Selling problem
Q...

Our problem: Delay sending a ML model update as
much as possible until a change in the distribution of the
error difference has occurred.



Optimal Stopping Theory in Practice

0 Cumulative Sum principle on the Absolute Error Difference not allowed to exceed
a Prediction Quality Tolerance @

2 Error Difference: Ae; = |e; — e;| with CDF F,,
0 Cumulative Sum: S, = Y& _, Aey

O Problem: Maximize the Reward Function

V. = { t, $:<0; postopone model delivery (continue)
£t —B, S;>0; penaly (stop)

0 Theorem: If the currently reward is higher than the conditional expected future
reward, send an updated model. The reward is maximized at the first time t:

t+B
t+1+B

Ve = E[Viiq|F] ©Fpe(0—5,) <



. |/ Other Model Update Policies

JMedian-based Policy
ML Model Update Criterion:
Ae; > a * median(Aeyq, ..., Ae;—1), a In (0,1)

JAccuracy-based Policy
OML Model Update Criterion: (old) e. > e/ (new)

CJRandom-based Policy
ML Model Update with probability: p
dpis the empirically estimated probability sending at the best time



Performance Evaluation

OGNFUV: Unmanned Surface Vehicles Sensor Dataset
(Harth & Anagnostopoulos, 2018)

Qdata: (humidity, temperature) from 4 USVs
dused with Linear Regression

Gas Sensors for Home Activity Monitoring Dataset
(Huerta et. al., 2016)

Qdata: (humidity, temperature) from 8 metal-oxide sensors
dused with Support Vector Regression (RBF kernel)
dincluded artificial incremental concept drift in the data



OThe absolute error difference for
the Optimal Policy (OP) does
not drastically deviate from the
other policies.

OP saves on average 5 times
more communication
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ANOVA Test: Linear Regression

dStatistical significant difference b/w policies:
O‘waiting time’ (ML model update postponing)

ANOVA p-value for

sensor pi3 | 1.248e-30 | <=0.05
sensor pi4 | 7.893e-14 | <=0.05

O‘absolute error difference’ (ML model discrepancy w.r.t. predictability)

ANOVA p-value for

sensor pi3 | 1.244e-13 | <=0.05
sensor pi4 | 2.723e-17 | <=0.05




Tukey’s HSD Test: Linear Regression
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- The absolute error difference for

the OP deviates the most from
the Accurate Policy

- OP waits on average 30 times
longer than the other policies
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S
@ ANOVA Test: Support Vector Regression

dStatistical significant difference b/w policies:
d'waiting time’

sensor R3 7.52e-28 <=0.05
sensor R5 9.96e-27 <=0.05

_‘absolute error difference’

ANOVA p-value for

sensor R3 2.56e-90 <=0.05
sensor R5 2.79e-03 <=0.05




Tukey’s HSD Test: Support Vector Regression
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QL Conclusions

Policy type High quality Lower quality
prediction models prediction model
CuSum high communication ©
Accuracy-based high communication high communication
Optimal Policy © ©
Median-based high communication high communication
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Thank you!

Katie Aleksandrova



