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Problem Statement 

Internet of Things system: 

Edge Sensors 

Neighbourhood Edge Gateways 

Data Centres (Cloud) 

What we Are doing: 

Sense multivariate contextual data at 

the Edge 

Transfer data to the Cloud for analytics 

Have accurate and up-to-date 

knowledge in the Cloud  

What we Don’t want: 

Computational overhead at the Data 

Centres  

Communication Overhead  

High Network bandwidth 
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Problem Statement  

What we Can do: 

Gather some of the sensed data in the 

sensor 

Create a ML model from that data 

Communicate the ML model 

Wait until a ML model Concept Drift 

(CD) has occurred 

Communicate an updated ML model 
 

 

What we Will achieve: 

Less communication in the network 

Lower bandwidth requirement 

Data is delivered to the Datacentre 

partially analysed 

Data is anonymised by preserving the 

raw context at the sensor level 

Sense data 

Create model 

Send model 

Check 

for 

CD 

Yes 

No 
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What is a Concept Drift? 

Def. ‘A changing context which induces a change in 

the target concepts’ (Widmer & Kubat, 1996) 

(Lemaire et. al., 2015) 
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Handling Concept Drift: Cumulative Sum (CuSum) 

Absolute Error Difference between current ML model and previously 
delivered ML model on the most up-to-date data: 
 ∆𝒆 = |𝒆 − 𝒆′| 

 

 

 Good Distribution and the Bad distribution of ∆𝒆 

 

 

Estimate the Probability  

   Density Functions: 𝑷𝒈𝒐𝒐𝒅  and  𝑷𝒃𝒂𝒅 

 

 

 

 

 
CuSum: Invented by E. Page, Uni of Cambridge, 1954 

Fig. Good Distribution vs. Bad Distribution 
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Handling Concept Drift: Cumulative Sum (CuSum) 

For each new ∆𝒆, calculate the Log-Likelihood Ratio: 
 

𝒍𝒕 = 𝑳∆𝒆 = 𝒍𝒏
𝑷∆𝒆 | 𝒃𝒂𝒅

𝑷∆𝒆 | 𝒈𝒐𝒐𝒅
 

 

Sum up the log-likelihood ratios up to time t: 
 

𝑺 𝒕 =   𝒍𝒌
𝒕
𝒌=𝟎  

 
Decision Value for Concept Drift detection: 

 

𝒈 = 𝑺 𝒕 − 𝒎𝒊𝒏𝟎≤𝒌≤𝒕−𝟏(𝑺 𝒌 ) 

 

ML Model Update Criterion: 𝒈 > 𝒉 , (𝒉 ← 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 
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From CuSum to Optimal Stopping Theory 

What does Optimal Stopping Theory deal with? 
How to estimate the best time to stop a process and gain the 

highest reward or suffer the least penalty? 

 

Popular Examples: 
The Secretary problem 

The Blackjack Card game 

The House Selling problem 

… 

 

Our problem: Delay sending a ML model update as 
much as possible until a change in the distribution of the 
error difference has occurred. 
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Optimal Stopping Theory in Practice 

Cumulative Sum principle on the Absolute Error Difference not allowed to exceed 

a Prediction Quality Tolerance 𝜣 

 

 Error Difference: ∆𝒆𝒕 = |𝒆𝒕  − 𝒆𝒕
′| with CDF  FΔe 

 Cumulative Sum: 𝑺𝒕 =  ∆𝒆𝒌
𝒕
𝒌=𝟎  

 

Problem: Maximize the Reward Function  

 

𝑽𝒕 =  
   𝒕,      𝑺𝒕≤ 𝚯;         𝑝𝑜𝑠𝑡𝑜𝑝𝑜𝑛𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒)

−𝑩, 𝑺𝒕 > 𝚯;       𝑝𝑒𝑛𝑎𝑙𝑦 (𝑠𝑡𝑜𝑝) 
 

 

  Theorem: If the currently reward is higher than the conditional expected future 

reward, send an updated model. The reward is maximized at the first time t:  

 

𝑽𝒕 ≥ 𝔼 𝑽𝒕+𝟏 𝔽𝒕]  𝑭𝚫𝒆 𝜣 − 𝑺𝒕 ≤
𝒕 + 𝑩

𝒕 + 𝟏 + 𝑩
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Other Model Update Policies 

Median-based Policy 

ML Model Update Criterion:  

    ∆𝑒𝑡 >  𝛼 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑒1, … , ∆𝑒𝑡−1), 𝛼 in (0,1) 

 

Accuracy-based Policy 

ML Model Update Criterion: (old)  et > 𝑒𝑡
′  (new) 

 

 

Random-based Policy 

ML Model Update with probability: p  

p is the empirically estimated probability sending at the best time 
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Performance Evaluation 

GNFUV: Unmanned Surface Vehicles Sensor Dataset  
(Harth & Anagnostopoulos, 2018) 

data: (humidity, temperature) from 4 USVs 

used with Linear Regression 

 

 

Gas Sensors for Home Activity Monitoring Dataset 
(Huerta et. al., 2016) 

data: (humidity, temperature) from 8 metal-oxide sensors 

used with Support Vector Regression (RBF kernel) 

included artificial incremental concept drift in the data  
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The absolute error difference for 

the Optimal Policy (OP) does 

not drastically deviate from the 

other policies. 

 

 

 

OP saves on average 5 times 

more communication  

Linear Regression Model 
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Statistical significant difference b/w policies: 

‘waiting time’ (ML model update postponing) 

 

 

 

 

‘absolute error difference’ (ML model discrepancy w.r.t. predictability) 

ANOVA Test: Linear Regression 

ANOVA p-value for waiting time 

sensor pi3 1.248e-30 <= 0.05 

sensor pi4 7.893e-14 <= 0.05 

ANOVA p-value for abs error 

sensor pi3 1.244e-13 <= 0.05 

sensor pi4 2.723e-17 <= 0.05 

12 



Tukey’s HSD Test: Linear Regression 

The waiting time for OP has a 

higher mean and the difference 

is statistically significant. 

The difference in the absolute 

error difference between OP 

and the policy that sends model 

updates constantly is not 

statistically significant. 
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Support Vector Regression Model 

• The absolute error difference for 

the OP deviates the most from 

the Accurate Policy 

 

 

 

• OP waits on average 30 times 

longer than the other policies 
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ANOVA Test: Support Vector Regression 

Statistical significant difference b/w policies: 

‘waiting time’ 

 

 

 

 

‘absolute error difference’ 

ANOVA p-value for waiting time 

sensor R3 7.52e-28 <= 0.05 

sensor R5 9.96e-27 <= 0.05 

ANOVA p-value for abs error 

sensor R3 2.56e-90 <= 0.05 

sensor R5 2.79e-03 <= 0.05 
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Tukey’s HSD Test: Support Vector Regression 

The waiting time for OP has a 

higher mean and the difference 

is statistically significant. 

OP and the other policies have                 

no statistically significant 

difference in the absolute error 

difference. 
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Conclusions 

Policy type High quality  

prediction models 

Lower quality 

prediction model 

CuSum high communication ☺ 

Accuracy-based high communication high communication 

Optimal Policy ☺ ☺ 

Median-based high communication high communication 
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Thank you! 

 

 
Katie Aleksandrova 


