

ESSENCE PERVASIVE & DISTRIBUTED INTELLIGENCE

Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach

Katie Aleksandrova,

Christos Anagnostopoulos, Kostas Kolomvatsos

18th IEEE International Symposium On Parallel And Distributed Computing, Amsterdam, 5-7 JUNE 2019

□Internet of Things system:

- Edge Sensors
- Neighbourhood Edge Gateways
- Data Centres (Cloud)

□What we Are doing:

- Sense multivariate contextual data at the Edge
- □ Transfer data to the Cloud for analytics
- Have accurate and up-to-date knowledge in the Cloud

What we Don't want:

- Computational overhead at the Data Centres
- Communication Overhead
- □ High Network bandwidth

□What we Can do:

- Gather some of the sensed data in the sensor
- □ Create a ML model from that data
- □ Communicate the ML model
- Wait until a ML model Concept Drift (CD) has occurred

□ Communicate an updated ML model

□What we Will achieve:

- Less communication in the network
- Lower bandwidth requirement
- Data is delivered to the Datacentre partially analysed
- Data is **anonymised** by preserving the raw context at the sensor level

□ Def. 'A changing context which induces a change in the target concepts' (Widmer & Kubat, 1996)

Handling Concept Drift: Cumulative Sum (CuSum)

Absolute Error Difference between current ML model and previously delivered ML model on the most up-to-date data:
 □ Δe = |e - e'|

Good Distribution and the **Bad distribution of** Δe

CuSum: Invented by E. Page, Uni of Cambridge, 1954

Fig. Good Distribution vs. Bad Distribution

Handling Concept Drift: Cumulative Sum (CuSum)

 \Box For each new Δe , calculate the Log-Likelihood Ratio:

 $\Box l_t = L_{\Delta e} = ln \frac{P_{\Delta e \mid bad}}{P_{\Delta e \mid good}}$

□Sum up the log-likelihood ratios up to time t:

 $\Box S[t] = \sum_{k=0}^{t} l_k$

Decision Value for Concept Drift detection:

 $\Box g = S[t] - min_{0 \le k \le t-1}(S[k])$

 \square ML Model Update Criterion: g > h, ($h \leftarrow threshold$)

From CuSum to Optimal Stopping Theory

What does Optimal Stopping Theory deal with?

How to estimate the best time to stop a process and gain the highest reward or suffer the least penalty?

Popular Examples:

The Secretary problem
The Blackjack Card game
The House Selling problem
...

Our problem: Delay sending a ML model update as much as possible until a change in the distribution of the error difference has occurred.

Optimal Stopping Theory in Practice

□ Cumulative Sum principle on the **Absolute Error Difference** not allowed to exceed a Prediction Quality Tolerance *Θ*

□ Error Difference: $\Delta e_t = |e_t - e'_t|$ with CDF $F_{\Delta e}$ □ Cumulative Sum: $S_t = \sum_{k=0}^t \Delta e_k$

□ **Problem:** Maximize the Reward Function

 $V_{t} = \begin{cases} t, & S_{t} \leq \Theta; \\ -B, & S_{t} > \Theta; \end{cases} \text{ postopone model delivery (continue)} \\ & S_{t} > \Theta; \text{ penaly (stop)} \end{cases}$

□ **Theorem:** If the currently reward is <u>higher</u> than the conditional expected future reward, send an updated model. The reward is maximized at the first time t:

$$V_t \geq \mathbb{E}[V_{t+1}|\mathbb{F}_t] \Leftrightarrow F_{\Delta e}(\Theta - S_t) \leq \frac{t+B}{t+1+B}$$

Median-based Policy

ML Model Update Criterion:

 $\Delta e_t > \alpha * median(\Delta e_1, ..., \Delta e_{t-1}), \alpha \text{ in } (0,1)$

□Accuracy-based Policy □ML Model Update Criterion: (old) $e_t > e'_t$ (new)

Random-based Policy

- Image: Model Update with probability: p
- p is the empirically estimated probability sending at the best time

Performance Evaluation

GNFUV: Unmanned Surface Vehicles Sensor Dataset

(Harth & Anagnostopoulos, 2018)

data: (humidity, temperature) from 4 USVsused with Linear Regression

□Gas Sensors for Home Activity Monitoring Dataset

(Huerta et. al., 2016)

data: (humidity, temperature) from 8 metal-oxide sensors
 used with Support Vector Regression (RBF kernel)
 included artificial incremental concept drift in the data

The <u>absolute error difference</u> for the Optimal Policy (OP) does not drastically deviate from the other policies.

OP saves on average 5 times more <u>communication</u>

□Statistical significant difference b/w policies:

□ 'waiting time' (ML model update postponing)

ANOVA p-value for waiting time			
sensor pi3	1.248e-30	<= 0.05	
sensor pi4	7.893e-14	<= 0.05	

□ 'absolute error difference' (ML model discrepancy w.r.t. predictability)

ANOVA p-value for abs error			
sensor pi3	1.244e-13	<= 0.05	
sensor pi4	2.723e-17	<= 0.05	

Tukey's HSD Test: Linear Regression

The difference in the <u>absolute</u> <u>error difference</u> between OP and the policy that <u>sends model</u> updates constantly is **not statistically significant**.

- The <u>absolute error difference</u> for the OP deviates the most from the Accurate Policy

 OP waits on average 30 times longer than the other policies

ANOVA Test: Support Vector Regression

□Statistical significant difference b/w policies:

□'waiting time'

ANOVA p-value for waiting time			
sensor R3	7.52e-28	<= 0.05	
sensor R5	9.96e-27	<= 0.05	

□ 'absolute error difference'

ANOVA p-value for abs error			
sensor R3	2.56e-90	<= 0.05	
sensor R5	2.79e-03	<= 0.05	

Tukey's HSD Test: Support Vector Regression

no statistically significant difference in the <u>absolute error</u> <u>difference</u>.

Policy type	High quality prediction models	Lower quality prediction model
CuSum	high communication	\odot
Accuracy-based	high communication	high communication
Optimal Policy	\odot	\odot
Median-based	high communication	high communication

ESSENCE PERVASIVE & DISTRIBUTED INTELLIGENCE

Thank you!

Katie Aleksandrova